
 
 
 
 
 
 
 
 
 
 
 
Proc. 4st Int. Conf. "Information Technologies and Management", April 11-12, 2006 (Information 
Systems Management Institute, Riga, Latvia, 2006) pp.  - . 

 1

 
 

LOAD-BALANCING TECHNOLOGY IN CLUSTER COMPUTING 

 

 

 

ALEXEI KUZMIN 

 

Institute of Solid State Physics of Latvian University 
Kengaraga Street 8, LV-1010, Riga, Latvia 

e-mail: a.kuzmin@cfi.lu.lv 
 

ABSTRACT  

Cluster computing becomes very popular approach used to provide solutions to problems that require significant 
computational power. An efficient use of cluster requires load balancing technology that optimizes cluster resources 
utilization. In this work we will describe a solution, which is used on Latvian SuperCluster (LASC) at the Institute of 
Solid State Physics of the University of Latvia. [Keywords: cluster computing, load balancing] 

1. INTRODUCTION 

Cluster computing refers to technologies that allow multiple computers, called cluster nodes, to work 
together with the aim to solve common computing problems [1,2]. A generic cluster architecture is shown 
in Figure 1. Each node can be a single or multiprocessor computer, such as a PC, workstation or 
multiprocessors server, equipped with its own memory, I/O devices and operating system. The nodes are 
interconnected by high speed local area network (LAN) such as, for example, Fast Ethernet or Gigabit 
Ethernet. To work as a single system, the cluster uses special software, called “cluster middleware” [1,2]. 
Note that cluster can be used for both sequential and parallel applications. However, to run parallel 
programs, the parallel programming environment (PPE) is required [1,2]. We will address these points in 
more details below. 

Clusters became originally attractive with the availability of high performance commodity computers 
and message-passing software, which plays the role of PPE. Today most high-performance systems, often 
called “supercomputers”, utilize cluster architecture. There have been totally 360 clusters in the recent 
Top500 Supercomputers list (as of November 2005) [3]. The first four places have been occupied by 
BlueGene/L, BGW, ASCI Purple and Columbia clusters (Figure 2), having performances up to several 
hundreds teraflops. It is worth to note that most (371) cluster systems in the Top500 list work under Linux 
operating system, that significantly reduces operation costs as well as increases compatibility between 
different installations. 

An example of high-performance computing (HPC) cluster in Latvia is Latvian SuperCluster (LASC) 
[4,5,6], which has been installed at the Institute of Solid State Physics (ISSP) of the Latvian University 
(LU) in 2002. The current architecture of LASC is shown in Figure 3. It is used for theoretical 
simulations in the fields of solid state physics and quantum chemistry by about 20 users, having different 
software demands, that  makes the question of optimization of cluster resources utilization very actual.  



 
 
 
 
 
 
 
 
 
 
 
Proc. 4st Int. Conf. "Information Technologies and Management", April 11-12, 2006 (Information 
Systems Management Institute, Riga, Latvia, 2006) pp.  - . 

 2

 
FIGURE 1. TYPICAL CLUSTER ARCHITECTURE [1]. 

 

 
BlueGene/L  

IBM 0.7 GHz PowerPC 440 
280.6 TFlops, 131072  processors 

 
BlueGene @ Watson (BGW) 
IBM 0.7 GHz PowerPC 440 

91.29 TFlops, 40960 processors 
 

 
ASCI Purple 

IBM 1.9 GHz Power5 575 
63.39 TFlops, 10240 processors 

 

 
Columbia 

SGI Altix 1.5 GHz  
51.87 TFlops, 10160 processors 

 

FIGURE 2.  TOP SUPERCOMPUTER SYSTEMS IN NOVEMBER 2005 [3]. 

Sequential Applications 

Parallel Applications 

Parallel Programming Environment 

Cluster Middleware 
(Single System Image and Availability Infrastructure) 

Cluster Interconnection Network/Switch

PC/Workstation 
 
 
 
 

Network Interface 
Hardware 

Communications
Software 

PC/Workstation
 
 
 
 

Network Interface 
Hardware

Communications
Software 

PC/Workstation
 
 
 
 

Network Interface 
Hardware

Communications
Software 

PC/Workstation 
 
 
 
 

Network Interface 
Hardware 

Communications 
Software 

Sequential Applications 
Sequential Applications 

Parallel Applications
Parallel Applications 



 
 
 
 
 
 
 
 
 
 
 
Proc. 4st Int. Conf. "Information Technologies and Management", April 11-12, 2006 (Information 
Systems Management Institute, Riga, Latvia, 2006) pp.  - . 

 3

 

In this paper we will review currently available technologies for cluster resources management and discuss our 
experience with load balancing technology, based on openMosix [2,7].   

2. CLUSTER SOFTWARE TOOLS AND MIDDLEWARE 

A cluster computer can be operated under different operating systems, including Linux, Unix and 
Windows [1,2,8]. However, to simplify its utilization for users and to optimize the use of cluster 
resources, a special cluster software tools as parallel programming environment (PPE), resource 
management and scheduling (RMS) system or middleware must be used. Examples of PPE are clustering 
libraries, as MPI (Message Passing Interface) [9,10] and PVM (Parallel Virtual Machine) [11,12] , or any 
other interfaces/libraries based on RSH (remote shell) and SSH (secure shell) technology. It is important 
to note that the use of PPE requires special design of applications by programmers, and the resources 
allocation is controlled by the user at the start-up time. This can result in a non-homogeneous load on 
cluster nodes especially in multi-users environment. To overcome this problem, the RMS system, e.g. 
openPBS, Condor or Libra [2,13], can be used to automatically control the load distribution among 
cluster nodes at the start-up time. Usually the RMS system looks like a batch system allowing to a user to 
submit a job through Web-interface. After job submission, the RMS system dispatches the job to the 
optimal cluster node(s) and returns the results of job execution back to the user via Web–interface. The 
drawback of RMS systems is the need of job description preparation and an inability to control 
dynamically (during execution) the cluster resources.  

Significantly better solution can be achieved through the use of the “middleware” technology [1]. The 
middleware layer resides between the operating system and user-level environment and consists of 
essentially two sublayers (single system image (SSI) and system availability) of software infrastructure. 
The main goal of the middleware is to guarantee transparency, scalability and availability of cluster 
resources. Transparency means that the middleware offers a single system image (SSI) view of a cluster 
system, so that users can use a single entry point (one node) to access full cluster resources without 
thinking about the complexity of the cluster architecture. Scalability guarantees easy modification of 
cluster, i.e. addition/removal of new nodes, with automatic load re-distribution. Finally, availability 

 

FIGURE 3.  LATVIAN SUPERCLUSTER (LASC) ARCHITECTURE IN 2006 [6]. THE CLUSTER IS OPERATING UNDER REDHAT 
LINUX 9.0 WITH OPENMOSIX AND CONSISTS OF 22 CPUS (PIII,P4-XEON) INTERCONNECTED BY FAST AND GIGABIT 

ETHERNET  NETWORKS. THEORETICAL PEAK PERFORMANCE IS ABOUT 48 GFLOPS. TOTAL CLUSTER RESOURCES ARE 44 GB OF 
OPERATING MEMORY (RAM) AND 3.0 TB OF HARD DISK SPACE. 



 
 
 
 
 
 
 
 
 
 
 
Proc. 4st Int. Conf. "Information Technologies and Management", April 11-12, 2006 (Information 
Systems Management Institute, Riga, Latvia, 2006) pp.  - . 

 4

means automatic recovery from failures by using checkpointing and fault tolerant technologies as well as 
handling consistency of data upon replication between nodes.  

SSI is the illusion, created by software or hardware, that presents a collection of resources as one, 
more powerful resource. The SSI offers several benefits such as transparent use of system resources, 
transparent process migration and load balancing across nodes, improved reliability and higher 
availability, improved system response time and performance, simplified system management, reduction 
in the risk of operator errors and no need to be aware of the underlying system architecture to use cluster 
nodes effectively. SSI can be implemented at different levels: (i) application and subsystem level, (ii) 
operating system kernel level and (iii) hardware level. The first type of SSI realization includes batch-
type systems and system management (RSH, SSH), special libraries (MPI, PVM) or software (Parallel 
Oracle [14], Sun Cluster [15]). The hardware realizations include symmetric-multi-processors  (SMP) 
techniques. Finally, the SSI can be incorporated into the operating system kernel as, for example, in 
Solaris-MC [15] and openMOSIX.  

OpenMosix, a Multicomputer Operating System for Unix, is a Linux kernel extension for single-
system image (SSI) clustering [2,7]. It uses adaptive load balancing techniques and allows processes 
running at one node in the cluster to migrate transparently to another node where they can execute faster. 
OpenMOSIX technology [2,7] is based on pre-emptive process migration mechanism and adaptive 
resources (processor, operating memory, network) allocation policy. One should note that openMosix 
cannot execute a single process on multiple physical CPUs at the same time, therefore openMosix will be 
not able to speed up a single process/program, except to migrate it to a node where it can execute most 
efficiently. At the same time, openMosix can migrate most standard Linux processes between nodes and, 
thus, allows for extremely scalable parallel execution at the process level. Besides, if an application forks 
many child processes then openMosix will be able to migrate each one of these processes to an 
appropriate node in the cluster. Thus, openMosix provides a number of benefits over traditional 
multiprocessor systems. Moreover, openMosix allows a creation of automatically configurable cluster 
with dynamic architecture, having a variable number of computational nodes. This allows for a temporary 
increase of cluster computation power using idle laboratory computers, connected to the cluster. 

TABLE 1. LIST O F OPENMOSIX LIVECD/DVD DISTRIBUTIONS AVAILABLE ON THE WEB. 

Linux 
distribution 

Brief description Internet address 

ClusterKnoppix  full openMosix Cluster with 
Knoppix and XFree  

http://bofh.be/clusterknoppix/ 

Quantian  DVD for mathematical/scientific 
workstations  

http://dirk.eddelbuettel.com/quantian.html

BCCD for cluster computing education  http://bccd.cs.uni.edu/ 
Clusterix 
  

Morphix-like distribution http://clusterix.livecd.net/ 

Dynebolic  for multimedia production http://bccd.cs.uni.edu/ 
   
CHAOS  CD based mini distribution http://midnightcode.org/projects/chaos/ 
PlumpOS  CD based mini distribution http://plumpos.sourceforge.net/ 
   
eucaristOS floppy based distribution http://eucaristos.sourceforge.net/ 
GoMF  floppy based distribution http://gomf.sourceforge.net/ 
openMosixLOAF  floppy based distribution http://openmosixloaf.sourceforge.net/ 
 

To take an advantage of openMosix technology, potential users can install modified Linux kernels on 
the stationary cluster nodes or use so-called “LiveCD” technology, which allows a temporary conversion 



 
 
 
 
 
 
 
 
 
 
 
Proc. 4st Int. Conf. "Information Technologies and Management", April 11-12, 2006 (Information 
Systems Management Institute, Riga, Latvia, 2006) pp.  - . 

 5

of a group of interconnected computers into a cluster. Today several openMosix-powered distributions 
(see Table 1) are readily available on the Web, allowing for a simple cluster configuration process on the 
fly. Each distribution is supposed to be used for a particular goal and therefore could contain some  
related software. In short, openMosix-based distributions can be divided into two groups: (1) full 
distributions, which include graphical Windows-type interface as XFree and possibly other cluster-
oriented software, and (2) CD or floppy based mini distributions, which can be used just to start-up a 
node in a cluster.  

 

Another LiveCD distribution, based on Linux RedHat 9.0 and being compatible with the LASC, has 
been prepared at ISSP and is called OMCD [6]. It can be used for dynamic expansion of the LASC 
system with new nodes or instant openMosix-type cluster construction using, for example, computing 
resources available in the computer classes.  In the last case, a possible cluster set-up is shown in Figure 
4, where a group of diskless nodes is connected to the central (“Master”) node through a network switch. 
The openMosix cluster can be configured using two ways: (1) manually by providing each cluster node 
with a list of all nodes IP addresses/names, or (2) automatically via the use of autodiscovery daemon, 
called “omdiscd” [2,7]. Also an important point is that all nodes in a cluster must use the same 
openMosix version. The OMCD distribution uses autodiscovery approach together with automatic 
allocation of the nodes IP addresses (through the DHCP server technology), so that no administrator 
intervention is required during cluster set-up. To use such cluster, the user(s) must connect to and run 
their applications on the central node. During execution time, the openMosix will take care to distribute 
all running processes among available computational nodes (including the central node) and will 
continuously try to maintain homogeneous load at all nodes. After program termination, the results will 
be automatically returned to the central node. Thus, this technology is completely transparent for users 
and does not require any modification of the user programs as well as a preparation of any additional job 
description files. 

 

 
FIGURE 4.  OPENMOSIX CLUSTER SET-UP WITH OMCD LIVECD [6]. 

Cluster Nodes with 
OMCD LiveCD 

Master Node  
(full Linux distribution) 

with DHCP Server 

LAN Switch 

• • •
Diskless nodes 



 
 
 
 
 
 
 
 
 
 
 
Proc. 4st Int. Conf. "Information Technologies and Management", April 11-12, 2006 (Information 
Systems Management Institute, Riga, Latvia, 2006) pp.  - . 

 6

 

3. CONCLUSIONS 

Load balancing technology, based on openMosix [2,7], is easy to use and allows to optimize 
automatically the utilization of cluster resources. Linux cluster with openMosix is reliable platform for 
high-performance computing with dynamically variable resources. It can be recommended for the use in 
educational environment, including teaching process, as well as for instant construction of temporary 
clusters.  

ACKNOWLEDGEMENT 

This work was supported in part by the Latvian Government Research Grants No. 05.1717.  

REFERENCES 

[1] Buyya R. (ed.) (1999) High Performance Cluster Computing: Architectures and Systems. Prentice 
Hall PTR. 

[2] Sloan J.D. (2004) High Performance Linux Clusters with OSCAR, Rocks, OpenMosix, and MPI. 
O'Reilly. 

[3] See http://www.top500.org/ 
[4] Kuzmin A. (2003) Cluster approach to high performance computing. Computer Modelling and 

New Technologies 7, 7-15. 
[5] Kuzmin A. (2004) Latvian SuperCluster  - LASC: recent developments. In Proc. 2nd Int. Conf. 

“Information technologies and management 2004“, Information Systems Management Institute, 
Riga, Latvia. 

[6] See http://www.cfi.lu.lv/lasc 
[7] See http://openmosix.sourceforge.net/ 
[8] Sterling T. (2003) Beowulf Cluster Computing with Windows (Scientific and Engineering 

Computation). Wiley. 
[9] See http://www-unix.mcs.anl.gov/mpi/ 
[10] Шпаковский Г.И., Серикова Н.В. (2002) Программирование для многопроцессорных систем 

в стандарте MPI. БГУ, Минск. 
[11] See http://www.epm.ornl.gov/pvm/pvm_home.html 
[12] Немнюгин С., Стасик О. (2002) Параллельное программирование для многопроцессорных 

вычислительных систем. БХВ, Санкт-Петербург. 
[13] Buyya R. (ed.) (1999) High Performance Cluster Computing: Programming and Applications. 

Prentice Hall PTR. 
[14] Mahapatra T., Mishra S. (2000) Oracle Parallel Processing. O'Reilly. 
[15] See http://www.sun.com/ 
 
 


